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Abstract: Weeds are one of the primary pests in agriculture production, with the number 
of herbicide-resistant weed populations on the rise. An integrated weed management 
approach that incorporates multiple strategies will be necessary moving forward to 
effectively manage weeds. Non-herbicide, autonomous, mechanical weed control will be 
a critical component in any integrated weed management program. Over the past decade, 
great progress has been made on the development of robotic weed control systems, 
particularly related to improved navigation, control, and artificial intelligence-based weed 
detection methods. Moving forward, research and development efforts into advancing 
automated weed control technologies will play a large part in shaping the future of weed 
control strategies. Understanding the current landscape of these research and 
development efforts is an important step in the weed control technology development 
process. This literature review provides an overview of progress made over the last 
decade (2010-2020) on robotics development specifically related to weed control, with a 
focus on relevant contributions from both academia and industry. 

INTRODUCTION 
Weeds are a persistent and significant problem in agricultural production. In cropping 

systems, weeds compete with crops for critical resources such as light, nutrients, and 
water, which can significantly reduce crop yields; additionally, weeds tend to grow and 
produce seed very rapidly (Zimdahl, 1980). Current weed management approaches rely 
on large-scale herbicide use; however, this approach is becoming unsustainable due to 
environmental concerns from off-target movement and increases in herbicide-resistant 
weed populations. As reported by Westwood et al. (2018), no new herbicide mechanisms 
of action (MOAs) have been developed since the 1980s, and the number of herbicide-
resistant weed populations have been steadily increasing since the 1970s. Given the 
significance of increasing herbicide resistant weed populations and economic pressures 
to reduce costs associated with hand weeding, there is a clear need to develop and 
implement more sustainable weed management approaches.  

Integrated weed management (IWM) has been defined as an approach that combines 
multiple tactics, including genetic, biological, chemical, ecological, and mechanical 
approaches for controlling weeds (Swanton & Weise, 1991). Moving forward, it is unlikely 
that any one of these approaches when used alone will result in successful weed control, 
but rather the development and application of multiple strategies will be necessary, 
including the incorporation of automated mechanical and non-herbicide removal 
technologies. The development of mechanized and robotic weeding systems can provide 
sustainable alternatives to traditional herbicide application approaches for a wide range 
of crops and cropping systems; a notion that is especially true considering recent 
technological advancements and relatively low barriers of entry in the development of 



 

artificial intelligence, machine learning, and robotic software development.  
Recent reviews have discussed non-herbicide machines and implements suitable for 

weed removal in organic and (Peruzzi et al., 2017), automated weed removal in specialty 
crops (Fennimore, Slaughter, Siemens, Leon, & Saber, 2016), and integrated weed 
management approaches that incorporate precision weed removal technologies (Gage & 
Schwartz-Lazaro, 2019; Young, 2012). Over the past decade there has been significant 
investment into research and development of robotics technology for automated weed 
removal, although some of this work has remained in a research environment and is not 
yet commercially available. Given this, the purpose of this review is to understand the 
current landscape and progress made in autonomous robotic weeding technologies over 
the last decade, with a focus on automation and artificial intelligence-related contributions 
from both academia and industry.  

The remainder of this paper is organized as follows. First, an overview of computer 
vision approaches for detecting weeds is provided, including RGB imaging, segmentation, 
and thresholding. Next, a detailed survey of weed identification approaches is included, 
focusing on row identification and use of spatial with spectral features, followed by a 
discussion on machine learning and deep learning approaches. Then, field coverage 
approaches for weeding robots is presented, including both coverage planning and task 
allocation for multi-robot systems. Finally, field-ready robotic systems are discussed, 
including commercially available systems and systems that are near commercialization 
but still under development. The report concludes with a discussion on considerations for 
future robotic systems and identifies areas where further research is needed.  

COMPUTER VISION APPROACHES FOR WEED DETECTION 
Computer vision approaches generally deal with utilizing complex image processing 

techniques to extract meaningful features from a given set of images. The general method 
for weed detection using computer vision starts with the acquisition of a digital image that 
will typically contain weeds mixed with crops, as well as soil in the background. Subsquent 
image processing aims to pinpoint the location of weeds, such that the system can swiftly 
and precisely guide the weeding mechanism. In some cases, the machine vision system 
is also designed to be used for guiding the navigation system of the robot. Computer 
vision approaches have been widely and historically used for post hoc weed identification 
(El-Faki, Zhang, & Peterson, 2000; Mao, Wang, & Wang, 2003; Perez, Lopez, Benlloch, 
& Christensen, 2000), but there is still progress being made on computer vision 
techniques for identifying weeds in the field in real-time for robotics applications. 

 



 

RGB IMAGING 
Acquiring RGB images in the field is the most economic computer vision method for 

weed detection and is commonly studied. Images may be acquired using handhld 
cameras, cameras mounted on a ground vehicle, or from a UAV (Gonzalez-de-Santos et 
al., 2017). In the case of weed detection, the objective of segmentation using RGB images 
is to segment the weed pixels and treat the crop and soil as background; however, weeds 
and crops have spectral properties that are indistinguishable in most cases, especially 
when the plants are young. Thus, weed discrimination algorithms typically first segment 
all vegetation pixels, followed by the classification of segmented pixels into crop and weed 
pixels. The addition of an NIR band to the RGB image acquisition is also found in some 
studies, which benefits the segmentation process. 

For the first step of vegetation segmentation, spectral properties of vegetation are 
commonly used. The basic spectral property that can be exploited is the greenness of 
vegetation. The green channel in RGB color space cannot be directly used for this 
purpose since intensity values in the RGB color space are correlated with illumination. 
Therefore, the intensity values from more than one channel must be used to obtain color 
indices suitable for vegetation segmentation across varying illumination levels. In this 
approach, a grayscale image is created by combining two or more color channels. Finally, 
a threshold is used to create a binary image with vegetation and background pixels 
separated into two classes. Among several color indices that have been used for this 
purpose, the Excess Green Index (ExG) (Woebbecke, Meyer, Von Bargen, & Mortensen, 
1995) is still found to be popular in recent weed detection literature (Guerrero, Pajares, 
Montalvo, Romeo, & Guijarro, 2012; Kargar & Shirzadifar, 2013). Segmentation of 
vegetation in field images is not a challenge unique to weed detection, and the techniques 
of spectral segmentation have been extensively studied. For example, Hamuda, Glavin, 
and Jones (2016) presented a detailed description of ExG and other color indices in their 
survey of methods for plant segmentation in field images. 

In addition to the use of color indices derived from RGB channels, some studies in 
weed detection have converted the RGB images into YCrCb (J.-L. Tang, Chen, Miao, & 
Wang, 2016), HSV (Kargar & Shirzadifar, 2013) or L*a*b color spaces (Hall, Dayoub, Kulk, 
& McCool, 2017) in order to isolate the chromatic properties from illumination properties. 
Some studies have used artificial lighting in the field to create uniform illumination across 
images (Haug, Michaels, Biber, & Ostermann, 2014; Lottes, Hörferlin, Sander, & 
Stachniss, 2017; Sujaritha, Annadurai, Satheeshkumar, Sharan, & Mahesh, 2017).  
Shading can also be used to create an area of diffused light (Bakhshipour & Jafari, 2018; 
Haug et al., 2014; Lottes et al., 2017). Post processing methods, such as histogram 
equalization and contrast stretching, have also been used to deal with images collected 
under varying illumination (Liu, Lee, & Saunders, 2014; Siddiqi, Lee, & Khan, 2014). 

Another challenge during segmentation using spectral properties is the masking of 



 

plant reflectance by foreign material; for example, masking can be caused by mud 
splattered onto leaves after rainfall or irrigation (Guerrero et al., 2012). To address this 
problem, Guerrero et al. (2012) used a combined vegetation index for initial segmentation 
followed by a support vector machine to retrieve vegetation pixels that may have been 
erroneously classified as background. 

USE OF NDVI 
In studies that use multispectral cameras producing RGB+NIR images, Normalized 

Difference Vegetation Index (NDVI) is the preferred method for segmentation of 
vegetation pixels (Bakhshipour & Jafari, 2018; Haug et al., 2014; Lottes et al., 2017). 
NDVI is the normalized difference between intensities at NIR and red channels and is 
useful for segmentation because living vegetation has higher reflectance in the NIR region 
compared to the visible region. In their study for weed discrimination using UAV imagery, 
Lottes et al. (2017) found that while ExG gave the best results among RGB-based indices, 
segmentation based on NDVI produced better segmentation results compared to RGB-
based indices. They reported that segmentation based on thresholding NDVI values 
performed better because of consistently higher reflectance of vegetation in the NIR 
region across different illumination levels. On the other hand, Potena, Nardi, and Pretto 
(2016) reported that selecting a reliable threshold while segmenting NDVI values can be 
challenging and proposed using a deliberately low threshold for initial segmentation 
followed by a convolutional neural network (CNN) model for removing any false positives 
that may result due to the low threshold value. 

THRESHOLDING 
Selection of an appropriate threshold value for segmentation is a step that presents 

many alternatives. Otsu’s method (Otsu, 1979) of finding the threshold value through 
grey-level histogram has been used by Gonzalez-de-Santos et al. (2017), Montalvo et al. 
(2012), Haug et al. (2014), Bakhshipour, Jafari, Nassiri, and Zare (2017), and García-
Santillán and Pajares (2018). Although Otsu’s method is popular in threshold detection 
tasks for plant images, several studies have reported it lacking in speed and accuracy for 
vegetation segmentation in real time (Burgos-Artizzu, Ribeiro, Guijarro, & Pajares, 2011; 
Milioto, Lottes, & Stachniss, 2018; Xu, Gao, Khot, Meng, & Zhang, 2018). Burgos-Artizzu 
et al. (2011) found that the use of mean intensity value as threshold made the process 
faster and more accurate. Milioto et al. (2018) reported that Otsu’s method failed in 
images where vegetation pixels are underrepresented in the image. They also cited 
problems with adaptive thresholding and advocated the use of a learning-based approach 
combining the segmentation and classification steps. Xu et al. (2018) used a particle 
swarm optimum algorithm to determine the threshold and reported that Otsu’s method 
was too slow for their real-time requirements. 



 

ROW IDENTIFICATION 
Once a binary image with a masked background is created, the next step is to identify 

the precise location of weeds and crops. For the classification of segmented vegetation 
into crops and weeds, several studies use the fact that crops in modern agriculture are 
planted in a regular pattern of rows. The problem is then reduced to one of row 
identification, after which all vegetation that does not belong to the detected rows can be 
classified as weeds. Burgos-Artizzu et al. (2011) presented a method for weed detection 
based on row identification in videos taken in a maize field. After segmentation using a 
color index, two methods for row detection were used: a fast method using vertical 
projection and a slower and robust process that finds persistent vegetation at the same 
pixel location through a logical AND operation across multiple frames. They reported an 
average accuracy of 95% for detection of weeds and 80% for the detection of crops when 
the algorithm was tested with images from varying illumination and field conditions. 
Vertical projection method for row detection was also used by J.-L. Tang et al. (2016). 
They used a linear scanning method to find the centerline of the row and calculated a 
weed infestation rate for image patches. This information was used for a Bayesian 
decision step that provided a spray/no-spray decision for herbicide application that had 
an accuracy of 92.5% compared to human decisions. Montalvo et al. (2012) used a row 
detection method based on least squares linear regression and built binary templates 
based on the location of the detected row lines. Tenhunen et al. (2019) used a clustering 
algorithm to detect crop rows in aerial images of a rye field.  

The Hough transform is also a commonly used technique for detecting rows in 
segmented images (Gonzalez-de-Santos et al., 2017; Louargant et al., 2018; Pérez-Ortiz 
et al., 2015). The detection of crop rows can also be used for navigation of the weeding 
robot as shown by Gonzalez-de-Santos et al. (2017), where the location of rows was used 
as correction to a navigation system for a system of ground and aerial robots with a 
primary navigation system using GNSS. 

While the use of spatial distribution information has been successfully used to detect 
inter-row weeds, contextual information alone is not sufficient. Midtiby, Åstrand, 
Jørgensen, and Jørgensen (2016) conducted a study to determine the upper limit for the 
detection of weeds using contextual information alone. They determined that the 
information about plant position is not sufficient for a detection accuracy higher than 95% 
when commonly encountered weed infestation rates are considered. They based their 
conclusion on the assumption that the cost of manual weeding will be lower than the cost 
of losses incurred at error rates greater than 5%, and concluded that morphological and 
spectral features must be used for more accurate results. 

 



 

SPATIAL, SPECTRAL, AND TEXTURE FEATURES 
Shape features have been frequently extracted from crop and weed pixels for training 

of supervised classification models. These are derived from the connected components 
in the binary images resulting from the segmentation process. The derived features can 
include geometric properties such as area, perimeter, major or minor axis lengths, 
eccentricity, and circularity. Bakhshipour and Jafari (2018) extracted these shape factors 
along with Hu’s moment invariant features (Hu, 1962) and Fourier descriptors from 
segmented images of a sugar beet field. They used these features to train a support 
vector machine and an artificial neural network and compared the performance of these 
two models for the classification of sugar beets and four different species of weeds. They 
found that the support vector machine provided better performance with an overall 
accuracy of 95% with 93.33% of weeds being correctly classified. Shape features with 
support vector machines were also successfully used by Kazmi, Garcia-Ruiz, Nielsen, 
Rasmussen, and Andersen (2015) and Rumpf et al. (2012). Models based on shape 
features are affected by occlusion, leaf damage, and by the growth of plants, and because 
of this, shape features are often combined with texture and spectral features. 

Golzarian and Frick (2011) extracted a combination of shape, texture, and color 
features that were reduced to three descriptors using Principal Component Analysis. A 
discrimination model was created and weed images were differentiated from wheat 
images with accuracies around 85%. Sujaritha et al. (2017) used texture features with a 
fuzzy classifier to detect weeds in sugarcane fields with an accuracy of 92.9% at 0.02 s 
per image. Bawden et al. (2017) used local binary patterns and covariance features to 
identify weeds in a cotton field through feature matching. They found that classification 
using covariance features outperformed classification based on local binary patterns; 
classification accuracy of 92.3% was achieved across multiple weed species. Sabzi, 
Abbaspour-Gilandeh, and García-Mateos (2018) started with 126 color features and 60 
texture features for objects in segmented images of a potato field. They reduced the 
number of features using a metaheuristic algorithm, and trained a neural network 
classifier that provided an accuracy of 98.38% at 0.8 s per image. Texture features alone 
were used with an artificial neural network model to discriminate weeds in a sugar beet 
field by (Bakhshipour et al., 2017).  

HYPERSPECTRAL IMAGING 
As an addition to the spectral information contained in color images, vegetation 

reflectance information beyond the visible range is commonly used and is a promising 
tool for the discrimination between weeds and crop species (Slaughter, 2014). Having 
spectral and spatial information over a range of wavelengths allows for robust 
segmentation of vegetation as well as for the discrimination based on additional spectral 
features. For example, Herrmann, Shapira, Kinast, Karnieli, and Bonfil (2013) acquired 



 

images using a visible-NIR camera and used partial least squares discriminant analysis 
for pixel level classification into wheat, broadleaf weed, and grass weed. Using an RGB 
image acquired in the field for ground truth information, an overall accuracy of 72% was 
reported. As in the case of RGB imaging, results have been obtained by using a 
combination of multiple features as opposed to spectral features alone. Lin, Zhang, 
Huang, Wang, and Chen (2017) conducted a laboratory study using hyperspectral 
imaging for the discrimination of maize leaves from those of six different species of weed. 
They found that spectral and shape features were the most important for the classification 
of species, while texture features were found to be helpful in reducing error rates in 
classifying among weed species. 

The usefulness of hyperspectral imaging comes with the challenge of multi-dimensional 
datasets and the need for special instrumentation for data collection in the field. While 
some studies make use of the entire spectral range to train classification models (Yun 
Zhang, Slaughter, & Staab, 2012), feature selection methods are also used to select the 
most relevant spectral features and to remove redundant or collinear variables (Wendel 
& Underwood, 2016; Yanchao Zhang et al., 2019). Most of these studies use line-
scanning imagers and thus require a method for precise movement of the imager over 
the crop rows. The hyperspectral imaging system is usually mounted on a tractor or a 
ground robot and enclosures with artificial illumination are also used (Yanchao Zhang et 
al., 2019; Y Zhang & Slaughter, 2011). Snapshot hyperspectral imagers have also been 
proposed to deal with the challenges associated with the line-scanning systems (Gao, 
Nuyttens, Lootens, He, & Pieters, 2018). 

DEEP LEARNING IN WEED DETECTION 
While computer vision approaches have been fairly successful in weed identification, 

in recent years deep learning models such as Convolutional Neural Networks (CNNs) 
have emerged as the dominating models in computer vision tasks. Image classification 
and object detection models based on CNNs have also been proposed for the task of 
weed discrimination, and successful implementations have been presented in multiple 
agricultural problems (Kamilaris & Prenafeta-Boldú, 2018). In case of weed detection, the 
problem becomes a special case of plant species classification.  

The advantage in using deep learning models is that they make segmentation and 
feature selection redundant since the extraction of features and the mapping of learned 
features to an output result are built into the network. In their study on weed detection in 
soybean fields, dos Santos Ferreira, Matte Freitas, Gonçalves da Silva, Pistori, and 
Theophilo Folhes (2017) presented a comparison between a CNN-based image 
recognition and three other methods using hand-crafted features: SVMs, AdaBoost, and 
Random Forests. Field images acquired using a UAV were first segmented by a method 



 

based on super-pixels and images with the derived super-pixels representing plants were 
used as input for the CNN model. Shape, color, and texture features were extracted for 
the feature-based models. Upon comparison, they found that the CNN model provided 
an accuracy higher than 98% for recognition of soil, soybean, broadleaf, and grass. The 
feature-based models also provided comparable results, but the authors concluded that 
the convenience of not having to manually craft input features for the model made the 
CNN model superior. 

CNNs also have the advantage of being able to handle images with occlusion, unlike 
the classification methods using shape features. Dyrmann, Jørgensen, and Midtiby 
(2017) used a fully convolutional neural network model for recognition of weed location in 
cereal fields with high occlusion. They were able to detect 46% of the weeds in the field 
and make progress in weed discrimination in cereal fields where traditional methods have 
not been successful. Ma et al. (2019) also made use of a semantic segmentation model 
SegNet (Badrinarayanan, Kendall, & Cipolla, 2017) based on fully convolutional network 
and achieved an accuracy of 92.7% in segmenting rice seedlings and weeds. Both of 
these studies made the use of transfer learning, which is the practice of using pre-trained 
models for the initialization of CNN filters. Espejo-Garcia, Mylonas, Athanasakos, 
Fountas, and Vasilakoglou (2020) also used transfer learning methods by exploiting pre-
trained CNN models in combination with support vector machines to detect common 
weeds in cotton and tomato plants with over 99% accuracy. Models trained on large 
datasets are used in cases of applications where the dataset may be limited, and this has 
been found to be advantageous even if the pre-trained model was trained on completely 
different data (Oquab, Bottou, Laptev, & Sivic, 2014). 

The requirement for a large amount of training data is one of the challenges associated 
with using CNN models for detection of weeds. Like all supervised models, the object 
detection models are only able to perform well on data that comes from the population of 
data which it has already been trained on. A commonly used technique to mitigate this 
problem is data augmentation, where transformations such as rotated versions of the 
available images are used as additional data (dos Santos Ferreira et al., 2017). Olsen et 
al. (2019) presented a large dataset named DeepWeeds with 17,509 labelled images of 
eight different species of weeds found in Australian rangelands. To establish a baseline 
for performance, they used deep learning models Inception-v3 (Szegedy, Vanhoucke, 
Ioffe, Shlens, & Wojna, 2016) and ResNet-50 (He, Zhang, Ren, & Sun, 2016) to obtain 
classification accuracies greater than 95%, demonstrating a real-time performance of 
53.4 s per image with the ResNet-50 model. Lammie, Olsen, Carrick, and Azghadi (2019) 
used the DeepWeeds (Olsen et al., 2019) dataset to conduct an experiment using FPGA 
inference engines for faster and energy-efficient application of deep learning models. This 
is an especially relevant direction of research since the computational power of mobile 
devices that can be carried by a weeding robot can be a limitation in terms of both speed 



 

and energy consumption. Comparison of two commonly used NVIDIA GPU devices in 
their performance for weed detection using a deep learning model was also conducted 
by Partel, Kakarla, and Ampatzidis (2019). A study that used a Raspberry Pi computer to 
realize real-time application of deep learning models was also conducted by Chechliński, 
Siemiątkowska, and Majewski (2019). Additionally, Milioto et al. (2018) investigated real-
time semantic segmentation of crop and weed images using a CNN model which was fed 
arrays of vegetation indices as input. 

An additional challenge that arises with the large datasets for deep learning algorithms 
is the necessity to label the images. Labeling of data is also a problem with non-deep 
learning methods previously discussed and several studies have attempted to create 
unsupervised detection methods without the need to select or label training data. 

UNSUPERVISED METHODS  
Unsupervised methods for weed detection presented in literature commonly use the 

regular sowing pattern of crops in rows. The method involves segmentation of vegetation 
followed by the detection of crop rows, after which the vegetation between the rows is 
automatically labeled “weed” for training a classification algorithm. Louargant et al. (2018) 
used this method in multispectral images of a sugar beet field, where the algorithmic 
labeling was used to train a SVM classification model. Bah, Hafiane, and Canals (2018) 
used a similar approach for automatic labeling of blobs for training a deep learning model. 
Pérez-Ortiz et al. (2015) also used this approach in their study on semi-supervised 
mapping of weeds in a sunflower field using an imaging device mounted on a UAV. 

Unsupervised clustering algorithms have also been proposed as alternatives to the 
supervised techniques (dos Santos Ferreira, Freitas, da Silva, Pistori, & Folhes, 2019; 
Hall et al., 2017; J. Tang et al., 2017). dos Santos Ferreira et al. (2019) used clustering 
algorithms based on deep neural networks, and concluded that the best classification 
accuracy can be obtained when a semi-supervised approach is used. J. Tang et al. (2017) 
reported that using a k-means feature learning algorithm to initialize parameters for a 
CNN model increased the accuracy of weed detection. Similarly, Hall et al. (2017) 
proposed a clustering approach based on deep learning models for enabling weed 
scouting in unknown fields. A classification method using deep CNN that allowed for 
reduced labeling due to image clustering was also presented by Hall, Dayoub, Perez, and 
McCool (2018). 

FIELD COVERAGE FOR ROBOTIC WEEDING 
In addition to weed detection, it is also critical to ensure adequate and efficient coverage 

within a field for autonomous systems to be effective. For a single autonomous weeding 
robot, a coverage path must be generated to ensure the system optimally covers the 



 

target area. When multiple robots are considered, weeding tasks and the target area must 
be divided to minimize resources and ensure that no two robots cover the same area. 
These systems must be coordinated in some way, and have either centralized or 
decentralized communication, and offline or online task planning, depending upon 
assumptions and operating conditions. Generating trajectories for groups of cooperative 
or collaborative robotics for autonomous agricultural operations, namely weed control, 
presents a challenge due to changing environmental conditions, broken or limited 
communication links, actuation limitations, and the physical constraints of field crops. 
However, recent pushes towards developing autonomous agricultural equipment have 
resulted in numerous path planning and task allocation methods for agbots that attempt 
to overcome those challenges. This section focuses on task allocation and coverage path 
planning approaches for autonomous agricultural ground robot systems that consider 
parameters specific to row cropping systems, instead of generic ground vehicle solutions. 

COVERAGE PLANNING 
Coverage planning is a topic that has a rich history of literature in the robotics 

community (Galceran & Carreras, 2013; Zafar & Mohanta, 2018). Given an area of 
interest, the goal of coverage planning is to plan a path which covers the entire target 
environment considering the vehicle’s motion restrictions and sensor characteristics, 
while avoiding obstacles (Galceran & Carreras, 2013). The task of guiding a ground-
based robot through a field to effectively manage weeds can be considered an instance 
of this coverage problem in which robot motion is restricted to moving parallel to pre-
existing crop rows within the field. Additionally, it is important that the generated 
trajectories are near optimal, given that operator-selected paths may not be most efficient 
(Zhou, Jensen, Bochtis, & Sørensen, 2015).  

Typically, decomposition methods are used prior to applying a solution for coverage 
planning to separate an irregular shaped area, such as an agricultural field, into 
subregions called cells, which reduces concavity and simplifies coverage (Choset, 2001). 
Decomposition methods can be exact, such as the trapezoidal or boustrophedon 
methods, which break the region into cells that exactly cover the free space within a field 
taking obstacles into account (Choset, 2000; Choset & Pignon, 1998); or, they can be 
approximate, in which the cells have a predefined shape and cannot represent the free 
space exactly (Latombe, 1991). These cells may then be covered by a single robot; for 
example, Ball et al. (2015) developed a coverage planner that used the boustrophedon 
decomposition method for coverage planning for N number of robots, where each robot 
was designated to cover a single cell. They evaluated this coverage planner with one real 
robot and 12 simulated robots, resulting in 9.7% overlap coverage and only 2.6% missed 
coverage, which was largely due to obstacle avoidance. To solve the problem of which 
cell to visit first, Zuo, Zhang, and Qiao (2010) represented the sub-region as nodes of an 



 

undirected graph, and a depth-first search algorithm determined the covering order of 
sub-regions. Their method resulted in an overall reduced number of turns, which can be 
a difficult maneuver for kinematically constrained ground vehicles in agricultural fields.  

In Hameed, Bochtis, and Sørensen (2013), a decomposition method for agricultural 
fields was developed that could adapt to obstacles of any shape or size, generate 
headland pass polygons, as well as utilize a user-specified driving angle to capture farmer 
practices. In addition to cell decomposition, their method also incorporated a genetic 
algorithm solver to determine the optimal cell sequence for a vehicle to visit. Once a field 
has been decomposed into regions, an optimized type of fieldwork coverage pattern, 
called the B-pattern, can be algorithmically computed based on a set of optimization 
criteria of mobile kinematics and dimensions (D. Bochtis, 2008; D. D. Bochtis, Sørensen, 
Busato, & Berruto, 2013). A comparison of B-type patterns and traditional (i.e., 
lawnmower) patterns resulted in a total energy consumption reduction from 3% to 8% in 
simulation (Rodias et al., 2017).  

Many of the above coverage planning approaches assume operation in a 2D plane; 
however, in reality, many agricultural field settings have hilly or rolling terrains, and 
incorporating this 3D information into vehicle planners can improve efficiency. Jin and 
Tang (2011) developed a 3D coverage planning algorithm that considered several 3D 
costs (headlands, soil erosion, and curved paths) and applied different coverage planning 
patterns to subregions. This approach reduced both headlands turning cost and soil 
erosion cost by 10.3% and 24.7%, respectively. Hameed (2014) developed an exhaustive 
search method to determine the optimal driving angle of an agricultural machine with the 
lowest energy requirements by generating a 3D representation of the field based on digital 
elevation models, with an average energy reduction of 6.5% when evaluated on spatial 
field data. An improved method for identifying optimal driving angles was later developed 
that considered the change in distance between adjacent paths due to projecting a 2D 
coverage plan onto a 3D space (Hameed, la Cour-Harbo, & Osen, 2016). 

The boustrophedon method and similar exact methods are primarily static in nature, in 
that they do not allow for modifications in the cell decomposition in real-time. For precision 
weeding applications, this may present a problem when one or multiple vehicles fail and 
cannot complete their assigned coverage task. Drenjanac, Tomic, Klausner, and Kühn 
(2014) developed a space-based decomposition algorithm that supports dynamic 
portioning to enable assigned areas to change or update during the mission. 

TASK ALLOCATION AND PLANNING 
One of the most challenging aspects of multi-robot systems is how to optimally assign 

a set of robots to perform tasks such that the overall performance is maximized given a 
set of constraints. The task allocation problem for automated weeding is allocating the 
time, place, and robot for performing weeding tasks within a given field. Task planners 



 

can generally be either offline, where information about the mission is used to generate 
task assignments for each robot a priori, or online, where the task planner may adapt to 
new information and new situations during a mission. Task planners may also be 
centralized, in which one central planner maintains a connection with and allocates tasks 
to all agents, or decentralized, where the task planning tasks are distributed between all 
robots within the system; additionally, there are some hybrid centralized-decentralized 
approaches. Each of these approaches has benefits and disadvantages, and examples 
of multi-robot task allocation and planning for weeding robots are described below.  

Centralized Planners: The European Project RHEA (Robot Fleets for Highly Effective 
Agriculture and Forestry Management) project aims to develop a fleet of smaller vehicles 
for crop management, with a focus on physical weeding. Their proposed system uses a 
centralized Mission Manager responsible for task planning based on goals and available 
resources and leaving the option to change the goal in case of system failure (Gonzalez-
de-Santos et al., 2017; Gonzalez-de-Santos, Ribeiro, & Fernandez-Quitanilla, 2012). Ball 
et al. (2015) also used a central multi-robot planner module that communicated perimeter 
and waypoint data to each robot, but each robot was designed to operate autonomously 
within its assigned cell. While central planners may be able to more effectively allocate 
tasks to multiple robotic systems, reliance on connectivity and potential connectivity loss 
between the planner and individual agents remains a challenge, in addition to the lack of 
robustness against failure of the planning agent.  

Decentralized Planners: Drenjanac et al. (2014) developed a distributed task planner for 
precision agriculture robot coverage using a space-based middleware. In this approach, 
robots send local information about location, available resources, and their capabilities as 
a query to the middleware, after which they received a “matching” task and will continue 
to execute it. Janani, Alboul, and Penders (2016) developed a real-time task allocation 
planner only using the local information on each robot without requiring inter-robot 
communication. In their approach, the number of robots must be equal to the number of 
regions in the field, and robots claim a region by occupying checkpoints outside of the 
region. The benefit of this approach is that it does not rely on communication or particular 
starting points for each robot; however, it requires each robot to find an unoccupied 
checkpoint which may be inefficient.    

A cooperative task assignment strategy was developed by Li, Remeikas, Xu, 
Jayasuriya, and Ehsani (2015) that obtains information from all “follower” robots and uses 
a greedy search algorithm to rank possible vehicle formation options. This task 
assignment can be retrigged by different types of events, such as obstacle detection, 
robot failure, or task completion, after which a new formation ranking occurs. Vehicle 
formations for citrus harvesting were evaluated, although new formations for robotic 
weeding could be developed within this framework.  

A coordinated planner (modeled as a foraging task) was developed by McAllister, 



 

Osipychev, Davis, and Chowdhary (2019) that maximizes a reward metric, which was set 
to be the total maximum height of weeds in subsets of the field; this metric was platform-
specific as it ensured the weeds did not grow larger than the specific weeding mechanism 
could control. Their framework was evaluated in a simulation environment based on weed 
growth models, named Weed World and developed by the authors, which enabled a row-
based reward calculation. This information was then used in the optimization algorithm to 
plan over all robots, sending each robot to a row with a max value, which continued 
asynchronously after each row was completed (McAllister et al., 2019). This method was 
able to evaluate different levels of information sharing and robot environmental 
observability, and more information sharing resulted in higher total reward for the weed 
planner. These processes are more dynamic than a single-time offline centralizer planner, 
making them more redundant to failures or changes that might occur during the mission.  

PROGRESS ON DEVELOPMENT OF FIELD-READY ROBOTIC WEEDING SYSTEMS 

COMMERCIALLY AVAILABLE SYSTEMS 
The agricultural industry has been working over the past decade to build autonomous 

robots that can perform mechanized weeding, as well as precision spraying. In general, 
there has been three main considerations for constructing these robots: 1) ease of 
movement of the robot within an agricultural field, 2) autonomous weed sensing, and 3) 
selection of an appropriate mechanism to remove the weeds. Arguably, one of the most 
important areas of ongoing development for commercially available autonomous weed 
removal robots is highly accurate weed sensing capabilities. Currently, there are three 
weed sensing systems commercially available: WeedSeeker (Trimble, Sunnyvale, CA, 
USA), WEED-IT Quadro (WEED-IT, Netherlands), and H-Sensor (Agricon GmbH, Ostrau, 
Germany). Both the WeedSeeker and WEED-IT technologies differentiate between plants 
and background material by assessing reflectance. The WeedSeeker incorporates near 
infrared LEDs, while the WEED-IT Quadro system uses blue LEDs and can operate day 
and night. The H-sensor is capable of detecting green on green and is designed for weed 
identification for site-specific weed management strategies. Originally developed with a 
German weed classification database, the H-sensor is currently being further developed 
for weed identification in Australian cropping systems.   

Several commercially available inter-row cultivation systems used some form of 
controlled lighting for weed and plant identification. An inter-row guidance system for 
mechanical weed control (Tillett and Hague Technology Ltd., Bedford, United Kingdom) 
utilizes a forward-facing camera and digital image template matching to detect crop rows, 
individual crops, or weeds. The Robovator (F. Poulsen Engineering, Denmark) is a vision-
based hoeing machine for controlled mechanical or thermal weeding in row crops that 
uses artificial lighting for consistent image quality in their camera- based weed detection 



 

system. Similarly, the Steketee IC Weeder (Sutton Agricultural Enterprises, Salinas, CA, 
USA) is an inter-row cultivating machine that uses hooded cameras with high powered 
LEDs to reduce variation in illumination for identifying plants.  

Garford Farm Machinery Ltd. (Peterborough, United Kingdom) developed their 
Robocrop video image analysis technique to locate individual plants. Their Robocrop 
InRow Weeder uses this technology in combination with tillage tools to mechanically 
remove weeds from both between and within crop rows, with a focus on transplanted 
crops. The Row Crop Thinner by Agmechtronix (Silver City, MN, USA) also uses machine 
vision to identify plant locations, and although this system eliminates unwanted plants 
through applying herbicidal spray, the technology could be adapted in the future for 
mechanical weed removal. Naïo Technologies (Escalquens, France) has developed Dino, 
an electric autonomous weeding robot, that uses computer vision to guide a variety of 
tools for weed removal including hoe shares, spiked harrows, or rotary hoes. Their system 
has been commercially available since 2017.  

SYSTEMS THAT ARE NEAR-COMMERCIALIZATION 
Several start-up companies and academic institutes have developed automated 

weeding systems that are currently ongoing testing on a limited scale. Blue River 
Technology (Sunnyvale, CA, USA) is developing a computer vision and machine learning-
based weed detection system utilizing a controlled lighting cover. Although it is currently 
being developed for see-and-spray applications, the weed detection technology could be 
used for mechanized weed control in the future. Vision Robotics Corporation (San Diego, 
CA, USA) is developing a vision-based mechanical weeding system that went into field 
testing early 2018. Ecorobotix is developing a solar-powered, autonomous weeding robot, 
the AVO, that uses machine learning for weed detection across multiple row crops. Their 
system is currently being developed for spot spraying, although the Delta manipulation 
could potentially be used for mechanical weed removal in the future. Deepfield Robotics 
(Bosch, Gerlingen, Germany) in partnership with Osnabruck University and Amazone 
(Hasbergen, Germany) have developed BoniRob, a multi-purpose agricultural robot. 
Their weeding application for this system utilizes a mechanical stamping mechanism and 
machine learning to identify and kill young weeds at a rate of approximate two weeds per 
second (Michaels, Haug, & Albert, 2015; Sellmann et al., 2014).  

The AgBot II is a prototype for a modular crop and weed management robot currently 
being developed by researchers at Queensland University of Technology. This system 
uses computer vision techniques and a lighting module to identify and classify plants and 
weed species, after which the system initiates weed removal with either mechanical blade 
hoe implements, a precision spray system, or a combination of both (Bawden et al., 2017). 
This system has been tested in preliminary field trials, with plant species detection 
accuracy greater than 90%. The Ladybird, currently under development at the Australian



 

 

Table 1: Summary of robotic systems either commercially available or near-commercialization  
Company System  Weed Detection Approach Cropping System Availability 

Trimble WeedSeeker Reflectance to determine plants vs. background Row crops Commercial 

WEED-IT WEED-IT Quadro Reflectance to determine plants vs. background Row crops Commercial 

Agricon H-Sensor Detects green on-green; currently being 
developed for species classification Row crops Commercial 

Tillet & Hague Inter-Row Guidance Autonomous mechanical weed control using 
cultivation tools and cameras Row crops Commercial 

F. Poulsen Engineering Robovator Vision-based hoeing machine for mechanical or 
thermal weed control Row crops Commercial 

Sutton Ag. Enterprises Steketee IC Weeder Inter-row cultivation machine that uses hooded 
cameras for identifying weeds Row crops Commercial 

Garford Farm Machinery Robocrop InRow Weeder Uses their Robcrop video analysis tool to locate 
individual plants for mechanical weed removal 

Row crops  
(transplant focus) Commercial 

Agmechtronix Row Crop Thinner 
Machine vision to identify weed locations for 

precision spraying, could be adapted for 
mechanical removal 

Row crops Commercial 

Blue River Technology See & Spray Agriculture Machines 
Computer vision and machine learning approach 

for weed identification; currently for see-and-
spray, could be used for mechanical removal 

Row crops  
(cotton focus) 

Startup (ongoing 
testing) 

Vision Robotics Corporation Mechanical Weeder Vision-based mechanical weeding system Row crops Startup (testing  
began 2018) 

Ecorobotix AVO Solar-powered see-and-spray weeding; could be 
adapted for mechanical removal Row crops Startup (possibly 

available fall 2020) 

Deepfield Robotics BoniRob Mechanical weed stamping mechanism, guided 
by machine learning for weed identification Row crops 

Startup (ongoing 
development  
and testing) 

Queensland University of 
Technology AgBot II 

Computer vision and lighting modules to identify 
and remove weeds with either mechanical hoe 

implements and/or precision spray system 
Row crops University research 

Australian Centre for Field 
Robotics Ladybird Sensor-based targeted weed removal Vegetable production University research 

SwarmFarm SwarmBot Uses existing optical spray technology with their 
newly developed small, lightweight machines 

Row crops (testing in 
cotton) 

Startup (limited 
testing) 

Naïo Technologies Dino Computer vision-based guidance of mechanical 
tools (hoes, spiked harrows, or rotary hoes) Vegetable production Early commercial 

(since 2017) 

Small Robot Company Dick Electricity-based weed removal Row crops (early  
focus on wheat) 

Startup (early trials 
pending 2020) 



 

Centre for Field Robotics (ACFR), is a ground robot for vegetable production equipped 
with hyperspectral, thermal, and infrared sensors that can perform a variety of tasks, 
including targeted weed removal (Underwood et al., 2015). Although their weeding 
systems currently use existing optical sprayer technology, the company SwarmFarm 
(Queensland, Australia) is developing smaller, autonomous robots for a wide range of 
agricultural applications that can more efficiently scale across farms of different sizes. A 
similar concept is currently being explored by the startup Small Robot Company 
(Salisbury, England, United Kingdom), which is developing an autonomous, non-herbicide 
weeding robot Dick that will use electricity (RootWave, Warwick, England, United 
Kingdom) to kill weeds. 

DISCUSSION AND CONCLUSIONS 

MACHINE VISION FOR ROBOTIC WEEDING 
A variety of imaging and machine vision systems have been used with weeding robots 

for the spatial location of weeds in the field. Most studies use RGB images followed by 
identification of the weeds in the images. The traditional approach in dealing with RGB 
images follows from segmentation to feature extraction to supervised modeling. A more 
detailed description of these methods for ground-based RGB imaging can be found in 
Wang, Zhang, & Wei, 2019. While segmentation is overwhelmingly conducted using 
spectral properties – the greenness of vegetation or ratios such as NDVI – multiple 
approaches have been used in the steps involving feature extraction and modeling. 
Spatial context is a reliable and popular feature used to separate crop from weeds, at 
least in the case of modern field agriculture where regular geometrical arrangement of 
crops can be assumed. Although this is a simple and useful feature to use for visual 
discrimination of weeds, it is only useful for detecting weeds between rows, and limitations 
to the sole use of spatial context have been reported (Midtiby, Åstrand, Jørgensen, & 
Jørgensen, 2016). As a result, shape, spectral, and texture features are usually included 
in the feature set. Additional features such as 3-D information are sometimes integrated 
into the process (Gai, Tang, & Steward, 2019). The use of hyperspectral images is more 
limited in robotic weeding because of the speed of acquisition, instrumentation 
challenges, and uncontrolled illumination in the field. Studies leveraging the advantage of 
the spectral information beyond the visible range do exist with creative solutions for 
instrumentation and lighting.  

A more recent development facilitated by the availability of vast computing resources 
and the ubiquity of digital imaging is the use of deep CNNs for weed detection. One of 
the advantages in using this method is the elimination of the feature extraction step. The 
model is trained using labelled images, and the feature extraction and learning are 
integrated in the model itself. CNN-based models are also useful in situations where weed 



 

detection must be conducted in situations other than fields with row-based cultivation, 
such as in rangelands. Olsen et al., 2019 presented deep learning methods for detecting 
weeds in the Australian rangeland, and they also provided a labeled dataset from their 
experiment. Availability of large datasets is a prerequisite for the successful use of deep 
learning methods, and creation of such datasets will be important for different field 
environments. One of the concerns with using deep learning models for robotic weeding 
is the ability to run the detection in real time. Recent studies have shown that rapid in-
field detection is possible using deep learning models, without specialized computing 
resources. Another concern in using deep learning models is the effort required in labeling 
the large datasets for training deep learning models. Techniques for reducing the labeling 
effort have been presented, which include classification using contextual information and 
using the classification result for training the deep learning models. This method is also 
used to implement unsupervised or quasi-supervised weed detection using RGB or 
hyperspectral images.  

Image acquisition using UAV’s has been attempted, with or without coordination with 
ground robots, and the weed detection methods used are similar to the ones employed 
in ground-based imaging. Studies to ensure that sufficient resolution is obtained using 
UAV imaging have also been conducted (Torres-Sánchez, López-Granados, De Castro, 
& Peña-Barragán, 2013). Velocity of these approaches, however, is limited by the 
following: i) computer vision and machine learning models that do the detection in real-
time, and ii) camera technology and lighting conditions that may result in blurry images 
(for example, detection limited to 400 mm/s in Michaels, Haug, & Albert, 2015). 

VEHICLE COVERAGE AND PATH PLANNING FOR MULTI-VEHICLE FLEETS 
While autonomous weed detection is one primary challenge area for robotic weeders, 

task allocation and field coverage are just as important for designing autonomous 
weeding systems. Efficient and optimized routes must be developed to ensure 
appropriate field coverage when multiple robots are used. Due to the fairly structured, 
and often known a priori nature of agricultural fields, established methods for both exact 
and approximate decomposition have yielded effective results for subsequent coverage 
planning, but using B-type patterns can reduce energy consumption (Rodias et al., 2017). 
Many of these approaches, however, made the simplification that planning happens on a 
2D plane. In reality, considering the effects of a 3D space affects overall coverage 
planning, including further reduced overall energy (Hameed, 2014).   

In addition to path-planning to ensure adequate coverage, the right robot must be 
assigned to complete weeding tasks at the right time for optimized, nonredundant 
operations. There are many approaches to solving this task allocation problem. 
Centralized planners have been explored for agricultural robotic fleets (Gonzalez-de-
Santos et al., 2017); however, due to possible communication barriers in agricultural 



 

environments, it is likely that decentralized approaches will be more robust against failure. 
Some decentralized approaches do not require more information beyond what is available 
from any given robot (Janani et al., 2016), although some level of information sharing 
between multiple robots within a fleet will likely improve overall system performance 
(McAllister et al., 2019). While promising, more in-field testing is necessary to fully 
evaluate decentralized approaches for agricultural multi-robot systems.  

INDUSTRY PROGRESS AND CONSIDERATIONS FOR ROBOTIC WEEDING SYSTEMS 
From an industry perspective, there is currently a diverse landscape of commercially 

available or near-commercially available robotic weeding systems on the market. Many 
of the currently available systems are autonomous interrow cultivators that use machine 
vision approaches to detect weeds. These systems tend to be larger machines that can 
traverse multiple rows in a single pass. While efficient, single machine approaches are 
less redundant to failures, and their capital acquisition tends to be more costly. On the 
other hand, there is a recent trend towards the development of smaller, portable, 
automated weeding robots that can operate alone or in a fleet. These systems offer more 
flexibility in operation, are redundant against individual system failures, and are more 
readily transportable between locations if lease models are adopted. Multi-vehicle fleets 
are also more scalable, because smaller fields may require only one or a few of these 
systems, while larger fields can scale up in the number of robots in a fleet. Weeding 
mechanisms that are currently being explored by these systems include electricity, 
mechanical stampers, and mechanical hoe implements; however, more complex weed 
removal systems have real-time control challenges (e.g., adjusting position of actuators 
to uneven ground terrain and vehicle position). 

One consideration for future commercialization of portable robotic weeding systems 
include their development and use as multi-use vehicles. Some vehicles are already 
being developed with this in mind, for example, the BoniRob system is also being 
developed with crop scouting abilities. Additionally, for these smaller, portable systems, 
another consideration that has yet to be addressed is shipping vehicles as either complete 
vehicles or sent to be put together on site, given the mechanical expertise and capabilities 
of many farmers in more remote areas who are dependent on fixing their own equipment. 
Additionally, there is great potential to adapt commercial see and spray technologies that 
detect weeds on-the-go for mechanical, no-herbicide machines; however, challenges 
likely remain regarding real time control of mechanical implements and efficiency.  

Given the current landscape of innovation and investment into agricultural robots, it is 
likely that many of these systems will make their way into production farming weed control 
practices, as weeds remain a significant and persistent problem around the globe. 
Overall, however, for these systems to be widely adopted, there is room for improvement, 
and factors like cost, maintenance, and ease of access have to be considered to make 



 

these robots commercially feasible at larger scales. 
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